OCTOBER 24, 2024

Sustainable Solutions: Addressing Deferred Maintenance on Your Campus

Setting the Stage

Sustainable Deferred Maintenance Approach

Case Study: Brown University

Opportunities for Your Campus & ESP Support

What is the biggest challenge your institution faces regarding deferred maintenance?

Setting the Stage Common Challenges



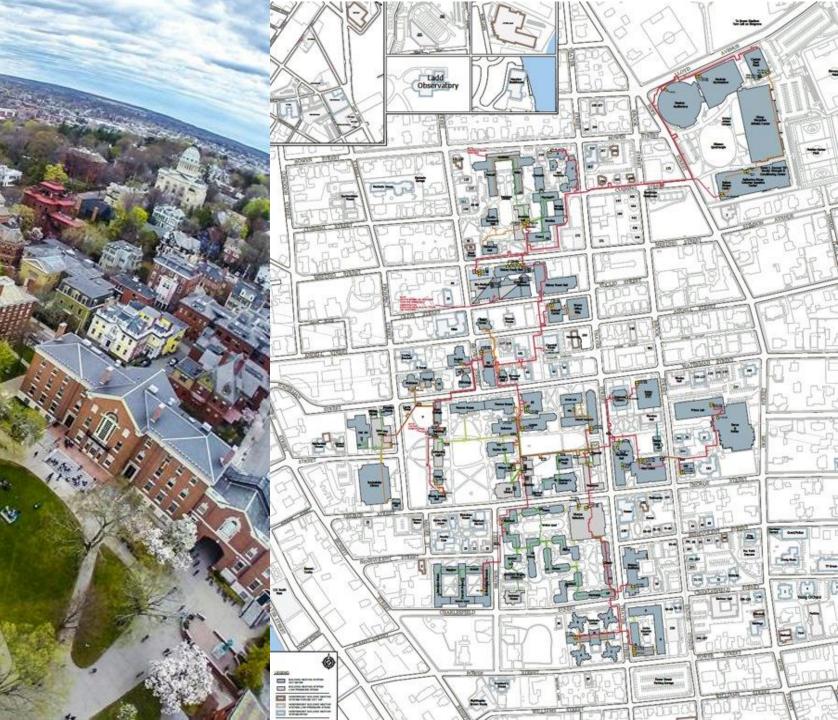
- ✓ Aging Infrastructure
- ✓ Resource Allocation
- ✓ Complexity of Upgrades
- ✓ Backlog of Maintenance

When does your institution typically address deferred maintenance issues?

Deferred maintenance & asset renewal is not just a cost, it's also an opportunity.

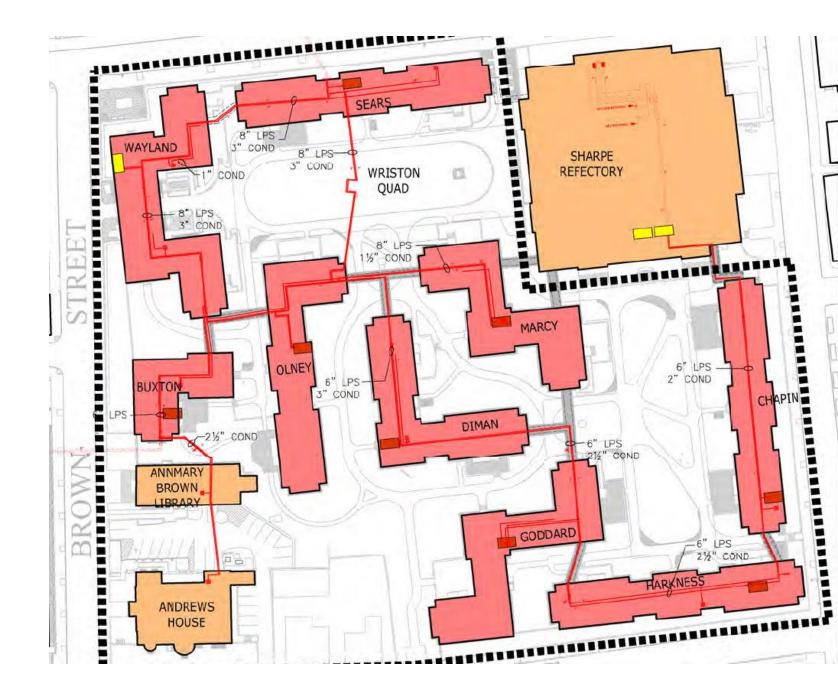
Adopt the Right Process

- 1. Start with a deferred maintenance need/project
- 2. Take a holistic look at other outcomes / energy systems around
 - a. Resiliency, OPEX, GHG emissions, comfort, disruption.
- 3. Identify 1-2 alternatives that add value
- 4. Compare using the right tools:
 - a. Life-Cycle Cost analysis
 - b. Choosing By Advantages decision making matrix


Choosing by Advantages Decision Matrix

Factors	Weight	Base Project	Alternative
Project Description		Scope #1	Scope #2
Life-Cycle Cost	X%	Focus on comparative advantage provided by each project. Give score (out of 5) for each factor.	
GHG Emissions	X%		
Comfort gains	X%		
Ease of O&M	X%		
Disruption	X%		
Resiliency	X%		
	100%	Weighted average	Weighted average

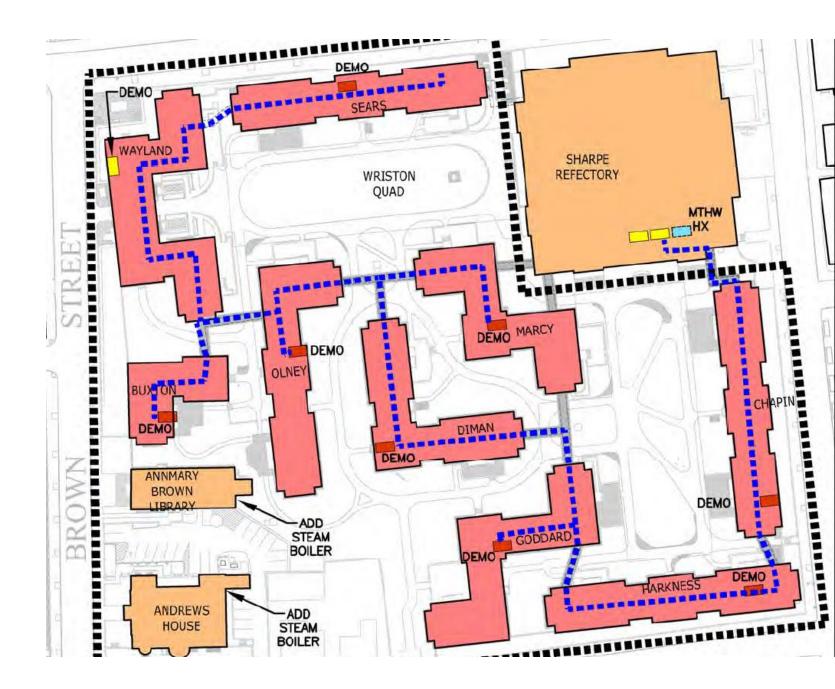
Brown University


Case Study



Dormitory Quad Initial Conditions

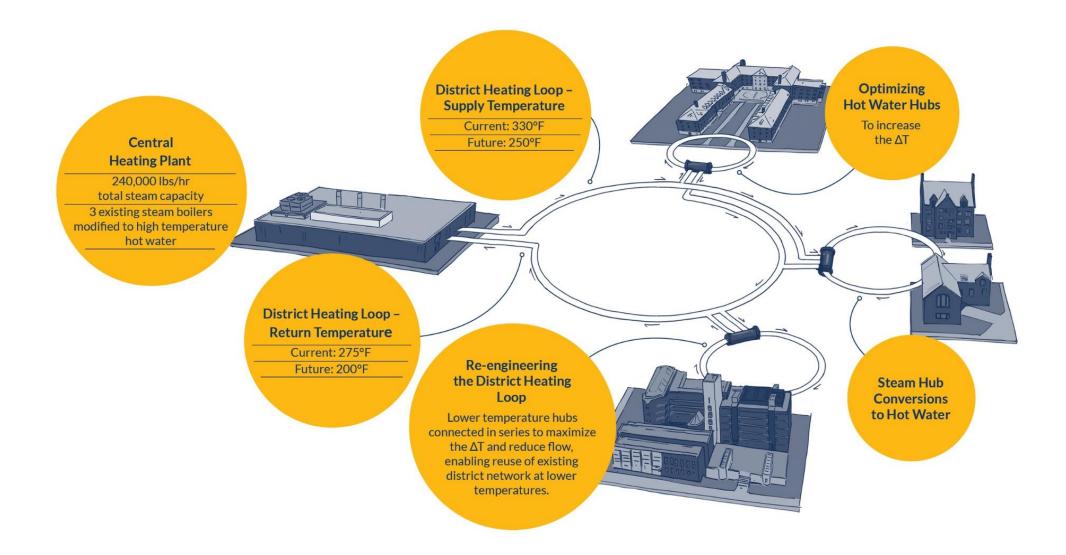
- ✓ 2 low pressure secondary steam loops
- Buildings already on hot water
- ✓ Heat exchangers end of useful life
- Similar needs on other secondary loops throughout campus



Dormitory Quad

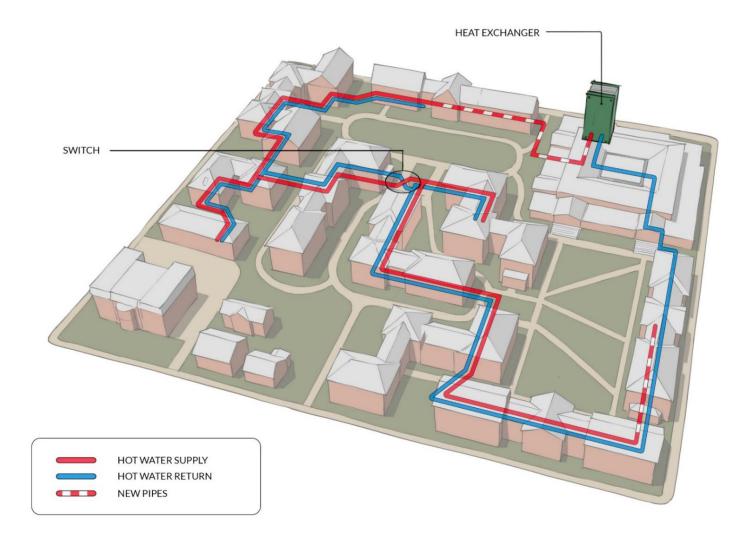
Base Project

- New hot water secondary distribution
- ✓ \$4M budget


Holistic look at other adjacent energy systems

- ✓ Central heating plant: lots of inefficiencies
- ✓ Campus-wide district heating loop: lots of inefficiencies
- ✓ Total deferred maintenance budget: \$17M (funded) with even more DM needs (unfunded)

Holistic look at other needs / desired outcomes


Stakeholders	Need / Desired Outcome	Foregone benefits
Plant manager	Improve ease of O&M at central heating plant	
VP Facilities	Reduce energy costs	Potential savings estimated at \$1M/yr
Dir Sustainability	Reduce GHG emissions: 42% reduction target (about half way there)	

Deferred Maintenance Need → Opportunity

Key Innovations to Reduce Costs

- Validated condition of existing piping
- Mix of installing new and reusing existing piping
- ✓ This residential quad only: reduced cost from \$4M to \$2.5M

CBA Example: Brown University (RI)

Factors	Weight	Base Project	Alternative
Project Description		Piping / heat exchangers replacement	Holistic upgrade of district heating system
CAPEX		\$17M	\$25M
Energy Savings		-	\$1M/yr savings
Subsidies		\$0	\$1M
Life-Cycle Cost / ROI	60%	4	5
Disruption	10%	3	4
Ease of O&M	10%	3	4
GHG Reduction	20%	2	5
Total	100%	3.4	4.8

CBA Example: Vassar College (NY)

Factors	Weight	Base Project	Alternative
Project Description		One-for-one chiller replacements	Heat Recovery Chiller
CAPEX	20%	4	3
OPEX Savings	30%	3	5
Ease of Building O&M	10%	5	3
Ease of Plant O&M	15%	3	5
GHG Reduction	25%	2	5
Total	100%	3.2	4.4

CBA Example: Adelphi University (NY)

Factors	Weight	Base Project	Alternative
Project Description		Replace: lab fume hoods valves + exhaust air strobic fans	Convert system to VAV + heat recovery between exhaust and fresh air intake
CAPEX	40%	4	3
OPEX Reduction	30%	3	5
GHG Reduction	10%	2	5
Comfort & Lab Safety	20%	4	5
Total	100%	3.5	4.2

CBA Example: DePauw University (IN)

Factors	Weight	Base Project	Alternative
Project Description		Repair steam system (heat exchangers, steam traps, piping, boilers)	Steam to hot water conversion
CAPEX	40%	4	3
OPEX	20%	3	5
Disruption	10%	3	3
Ease of O&M	10%	3	4
Enable future decarb.	10%	1	5
Comfort & Safety	10%	3	5
Total	100%	3.2	3.9

Other recent examples in universities/colleges

Factors	Base Project	Alternative
Project Description	Replace chillers like for like	Install new chillers + thermal storage
CAPEX		
Inflation Reduction Act subsidy		Because of thermal storage
OPEX Savings		
GHG Reduction		

Other recent examples in universities/colleges

Factors	Base Project	Alternative
Project Description	Replace window AC units + Replace peripheral heating	Reuse existing hydronic network, install new heat pumps in each room for simultaneous heating/cooling
CAPEX		
Subsidies		Help pay for increased CAPEX
OPEX Savings		More efficient heating/cooling
Ease of O&M	Two systems	One system
GHG Reduction		Offsets boilers gas consumption

Energy Sustainability Program Support & Funding Options

ESP Support

How our team can help

- Strategic review of your deferred maintenance / capital renewal needs
- ✓ Adoption of the right processes and tools
- ✓ Obtaining alignment with stakeholders
- ✓ Implementation and financing of added value DM projects

How do you plan to fund your deferred maintenance projects over the next 5 years?

Funding Options First American Education Finance

First American is committed to helping our clients progress toward a carbon neutral/low-carbon campus.

Common Projects

- Deferred Maintenance
- Energy Efficiency
- Renewable Energy
- Clean Transportation

Customized Structures*

- Enhanced Terms
- Leases and Loans
- PPAs and ESAs

Independent Capital

- Attractive Alternative to ESCO Financing
- Vendor & Tech Agnostic
- Support Sustainability Plan

*All transactions are subject to credit approval. Eligibility for a particular service is subject to final determination by First American Equipment Finance. Some restrictions may apply.

Program Resources

For Further Questions on Next Steps

Program Web Page:

https://www.thecoalition.us/energy-sustainability-program

Program Contact Information:

Financing-related questions: Chad Wiedenhofer First American Education Finance Chad.Wiedenhofer@FAEF.com Project-related questions: JP Drouin Ecosystem jpdrouinbouffard@ecosystem.ca

Scan this QR code for the ESP web page

THANK YOU Questions?

First American Commercial Bancorp, Inc. is a wholly owned subsidiary of City National Bank. Deposit products and services are offered by City National Bank Member FDIC. City National Bank is a subsidiary of Royal Bank of Canada. All trademarks are property of their respective owners. Additional terms apply and can be found by visiting faef.com/terms.

©2024 First American Equipment Finance. All rights reserved.